Operator, Location, & Consequences

<table>
<thead>
<tr>
<th>Date of Failure</th>
<th>4/8/2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodity Released</td>
<td>Crude Oil</td>
</tr>
<tr>
<td>City/County & State</td>
<td>Cushing/Payne County, Oklahoma</td>
</tr>
<tr>
<td>OpID & Operator Name</td>
<td>30829 - Enterprise Crude Pipeline, LLC</td>
</tr>
<tr>
<td>Unit # & Unit Name</td>
<td>14464 – Oklahoma 30 Inch</td>
</tr>
<tr>
<td>SMART Activity #</td>
<td>139211</td>
</tr>
<tr>
<td>Milepost / Location</td>
<td>Breakout tank line C75 with Cushing West Terminal (Tank Farm)</td>
</tr>
<tr>
<td></td>
<td>GPS Coordinates: 35.953247°N, 96.758858°W</td>
</tr>
<tr>
<td>Type of Failure</td>
<td>Breakout tank line failure due to internal corrosion</td>
</tr>
<tr>
<td>Fatalities</td>
<td>None</td>
</tr>
<tr>
<td>Injuries</td>
<td>None</td>
</tr>
<tr>
<td>Description of area impacted</td>
<td>The failure occurred within the operator’s station facility located in a remote area</td>
</tr>
<tr>
<td>Property Damage</td>
<td>$1,698,327.00</td>
</tr>
</tbody>
</table>
Executive Summary
At approximately 10:04 p.m. central standard time (CST) on April 8, 2012, operations personnel for Enterprise Crude Pipeline, LLC (Enterprise) discovered a leak on their 24-inch C75 line located in their Cushing West Terminal Facility located in Cushing, Oklahoma. Enterprise reported the leak to the National Response Center (NRC 1008104) on April 8, 2012, at 10:46 p.m. CST. Upon detection of the release, Enterprise shut the line in. An accident investigator from the Pipeline and Hazardous Materials Safety Administration’s (PHMSA) Southwest Region was dispatched to the failure site. A second PHMSA investigator coordinated with the control center for records.

Metallurgical analysis of the pipe concluded the root cause of the failure was internal corrosion. No other causal factors or controller/operator actions were determined to be involved with the incident.

The failure occurred completely within the facility’s tank containment area. 600 barrels of oil were released and recovered on site. No fatalities or injuries were involved, and the overall cost associated with the accident was $1,698,327.00.
System Details
The failure occurred on Enterprise’s C75 Line. Line C75 is located inside Enterprise’s Cushing West Terminal in Payne County, Oklahoma, near the town of Cushing. The pipeline, 24-inches in nominal diameter, bi-directionally transfers crude oil between Manifold D to tankage within the Cushing West Terminal facility. There is no leak detection on the 24-inch line.

C75 Schematic Detail
Aerial View

The pipeline is included in the PHMSA-designated SMART Unit No. 14464 “OKLAHOMA 30 INCH.” The system begins at the Texas-Oklahoma border near Colbert, OK, and terminates in Cushing, OK. The unit consists of approximately 152 miles of 30-inch-diameter pipeline with 10 tanks at Enterprise’s Cushing East Terminal and 14 tanks (6 breakout) at their Cushing West Terminal. The unit includes header and interconnect piping to the Cushing East Terminal. Crude is shipped between the West and East Terminals for storage, utilizing tanks at both of these terminals. When Enterprise ships crude to Cushing, it is shipped via the 30-inch-diameter Seaway line.

Pipe Specifications

External markings for the line stated it was 24-inch outer diameter, 0.281-inch wall thickness, Grade X60, electric resistance welded (ERW) line pipe that was externally coated with fusion-bonded epoxy (FBE) coating at the pipe mill. The line was constructed in 1991-92 by Koch Pipeline Co. It was later sold to TEPPCO Partners LP before being acquired by Enterprise in 2007. Enterprise did not have any of the construction records for this line, indicating they were lost when Enterprise acquired the line. Therefore, no material test reports or hydrostatic test records were available for this portion of the unit at the time of the incident (hydrostatic record was subsequently provided by the operator). The operator stated that they were in the process of hydrotesting all the lines without records. Maximum operating pressures (MOP) were based on the lowest-rated appurtenances on the line, in this instance, ANSI 150 flange ratings in the terminal’s piping. The MOP of the failed 24-inch-diameter line was 275 psi at the time of the incident. The normal operating pressure for the line is 70 psig.
Events Leading up to the Failure
Prior to the accident, on Saturday April 7, 2012, Plains Basin control was pumping crude oil through Enterprise’s 24-inch-diameter C75 line through Manifolds A and D, which are under Enterprise’s control. Neither company is capable of monitoring the other’s operating status on the pumping or receiving end through their systems; they rely on verbal communication to confirm that the delivery process has started and/or stopped (there was no report of irregularities during the transfer process). The delivery was completed that same day. Enterprise did not discover the leak until Sunday night when crude oil was seen bubbling from the ground. It is not clear at this time whether the failure occurred during the pumping process or after when there was head pressure only on the line. There were no indications of any abnormal operations immediately prior to the discovery.

The pressure in the pipe at the time and location of the leak was 17 psig (the line normally operates at 70 psig). At peak operation, this section can see a flow rate of 17,000 barrels per hour of turbulent flow. No abnormal operations were observed or recorded during the previous day’s transfer operations.

Emergency Response
At about 10:04 p.m. CST on April 8, 2012, Enterprise personnel observed oil within the containment dikes of Tanks 21 & 22 within their Cushing West facility. The operator began responding to the release and began shut-in procedures shortly after discovery by closing off Manifold D (outside the West Cushing Terminal), Manifold A (inside the West Cushing Terminal), and the individual tanks within the terminal.

A review of station deliveries showed that the failed 24-inch-diameter line was not in service at time of discovery. Review of logs showed the last flow through the line had been at 8:00 p.m. CST the previous night (Saturday). This flow was a delivery to Tank 23, via the failed line, from the Plains Basin line through Enterprise’s D and A manifolds in the West Cushing Terminal.

Additionally, operator personnel performed the following actions:

- Notified the National Response Center (NRC) at about 10:45 p.m. CST (Report No. 1008104);
- Executed their spill response plan, including summoning their Emergency Response Contractor;
- Began picking up free product; and
- Began the process of locating/excavating/exposing the leak source.

Enterprise reported a 600 barrel (approx. 25,000 gallons) release to the NRC with the cause of the leak as unknown at the time. Enterprise confirmed there were no injuries, explosions, or fires associated with this release. Enterprise also indicated that vacuum trucks were en route to pick up free product, and affected soil would be excavated.
Initial response to leak including additional precautionary berming

Emergency clean up contractors vacuuming up free product
Trenching and locating/exposing the leak source

Temporary clamp plug installed

As part of the emergency response, Enterprise’s contractor performed a cut-out operation in the failure area to allow for visual field inspection of the interior surface of the line as well as in up and downstream directions. The cut-out was sent for metallurgical examination.
Summary of Initial Start-Up and Return-to-Service

During the accident response phase, discussions between PHMSA and the operator regarding returning the line to service prompted the operator to replace the entire 1500-foot section of 24-inch-diameter line rather than performing a welded “pup” type repair. Additionally, as part of the operator’s corrective/preventative actions, improved hygienic maintenance capabilities were added to the system (launchers and traps for cleaning pigs) that were previously not in place.

Investigation Details

Control personnel were interviewed, and supervisory control and data acquisition (SCADA) and other flow records were reviewed, and no indications of abnormal operating conditions were observed or recorded on the system. No control room, SCADA, operational actions, operator qualification, or drug and alcohol issues were identified as contributory factors in this incident.

Initial field observations of the cut-out failure section indicated a 1.4-inch through wall hole had been created at the 6 o’clock position of the pipe at a low point in the line. The fusion-bonded epoxy coating on the exterior of the pipe immediately surrounding the hole was missing in a 1/4- to 3/4-inch-wide non-concentric border. Further observations from the field indicated the failure originated from an internal corrosion issue.
1 ¼” Leak

Other interior surfaces of the pipe (both in the cut-out sections and the remaining two cut ends) did not reveal similar deeply pitted corrosion surfaces as in the area immediately surrounding the hole. No other areas of obvious metal loss could be observed in the field.

All other areas of the fusion-bonded epoxy (FBE) coating appeared to be well-bonded and in good condition.

Metallurgical Analysis

After the failure specimen was cut out and removed, both ends were capped in plastic, and the remainder of the pipe was wrapped in clear plastic film for transport to Kiefner and Associates, Inc. (KAI) in Worthington, Ohio. A chain of custody was developed as part of transporting the specimen.

The investigation of the cut-out at KAI consisted of a visual inspection of the specimen, metallographic examination through the leak path section, and the bacteria testing of foreign material found in the leak path. Additionally, the sizes, steel compositions, and tensile properties of the pipe material were measured.

Visual Inspection

Upon arrival at KAI, the failure specimen was unwrapped and photographed. The specimen had not been marked with clock positions, but Enterprise noted to the lab the leak hole was at the 6 o’clock position. The diameter of the hole was measured at 1.4-inches with a circular area around the hole missing the FBE coating.
The external area with missing coating and exposed metal was corroded. The laboratory report summarized this in the following:

“The missing coating and corroded metal on the external surface can be rationalized as follows. Initially, the internal corrosion pit perforated the pipe wall as a pinhole without breaking the FBE coating. Then corrosants from the pit migrated between the coating and external pipe wall, causing the latter to corrode under the coating until internal pressure in the pipeline ruptured the circular area of coating.”

The FBE on the remaining portions of the specimen appeared in good condition, as had been previously observed in the field. The internal surface was covered with oil. Aside from the area with the hole, no other areas of metal loss were evident on the specimen.

So that the internal surface could be more easily examined, an 11-inch by 14-inch coupon surrounding the hole was cut from the failure specimen. The coupon’s internal wall surface was covered in orange rust with the pit wall surface caked in oil. The coupon’s interior wall surface and pit interior were cleaned to remove the oil and rust. As noted in KAI’s metallurgical report, “the bare metal wall of the pit was covered with smaller pits. The pit within pits morphology is consistent with the pit having formed under an occlusion, such as a biofilm or a deposit.”

Metallography

Metallography was performed on a transverse cross section through the longitudinal seam weld that was cut out, polished, and etched. This verified the longitudinal seam weld was a high-frequency, electric-resistance weld (HF-ERW) that was subjected to a localized, post-weld heat treatment. The heat treatment eliminated hard microstructures in the heat-affected zone of the ERW seam weld as required by the 40th Edition of API 5L. The manufacture of the long seam weld by the pipe mill showed no contributory factors to the failure.

A metallographic-sectioned specimen was prepared through the pit opening and polished for examination. Micrographs showed the mouth of the pit on the internal surface of the pipe to be wider than the external surface. This indicated the pit initiated on the internal surface of the pipe and grew outward toward the exterior of the pipe.

The microstructure of the steel adjacent to the pit was no different than the microstructure of the steel in the remaining cross section, which was of a fine-grained ferrite structure. There were also no visible metallurgical defects associated with the pit. Nothing in the microstructure’s characteristics could be observed as contributory to the failure.
Tests for Bacteria (MIC related)
The pit wall was tested for the presence of five types of bacteria that can accelerate the corrosion of steel. As a comparison, an area of the internal wall was also tested where corrosion was not observed.

Tests that microbiologically influenced corrosion (MIC) created the pit were inconclusive. Though the pit wall contained some viable anaerobic bacteria and some viable low-nutrient bacteria, it did not contain detectable numbers of viable sulfate-reducing, acid-producing, or iron-related bacteria. Correspondingly, the non-corroded area on the internal pipe wall yielded results similar to that of the corroded portion.

The internal pipe surface around the hole revealed it was the result of an internal corrosion pit that had grown through the pipe wall. The pit wall was covered with smaller pits. This indicated the pit grew under an occlusion such as a deposit or a biofilm. As corrosion-related bacteria were detected, there is a possibility that these bacteria entered the pipe after the pit formed.

The presence of MIC bacteria, itself, is inconclusive as to the cause. The bacteria found in the test could have entered the pipe when the line was unpressurized or when the failed section was cut out in the ditch. Therefore, the test results for MIC could not adequately determine if MIC was a causal factor.

Physical Properties of the Pipe Specimen
A series of tests to confirm the size, steel composition, and tensile properties of the pipe were performed by KAI. These results were compared to requirements in the 40th Edition of API Specification 5L - November 1, 1992 (the edition of 5L in effect when the line was constructed).

Testing concluded the pipe material met the size, chemical, and tensile properties for API 5L, Grade X65 line pipe for the era of construction as well as the standard of manufacture and construction. Based on the findings of these tests, neither the pipe material nor the line’s construction method contributed to the failure.

Findings and Contributing Factors
Determining the cause of the failure relied on visual observations of the failed section when exposed in the field, review of operational records, interviews with operator personnel, and the results of the metallurgical testing.

When the failure point was observed in the ditch (prior to cut-out) by the PHMSA inspector, it was clear that the hole had formed at the 6 o’clock position on the lowest point of that portion of the line. This low point was further confirmed when the cut-out was removed and both cut ends continued to drain their respective portions of remaining product.

Interviews with station operations personnel revealed that while the line did see turbulent flow when in use (up to 17,000 barrels per hour), it did not receive any cleaning pig operations (unpiggable at time of failure) or other activities to ensure the hygiene of these lines against internal corrosion.

Ultimately, the cause of the failure was a result of internal corrosion. When determining the cause of the failure, discussions between PHMSA and the operator prompted a full line replacement within the station from the supply manifold to the tankage, rather than repairing the failed section with a pup. This line replacement included upgrading this portion of the line to allow maintenance pigging activities as a preventative measure against a similar type failure in the future.
Appendices

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Maps</td>
</tr>
<tr>
<td>B</td>
<td>NRC Report (1008104)</td>
</tr>
<tr>
<td>C</td>
<td>Accident Report 7000.1 (20120141)</td>
</tr>
<tr>
<td>D</td>
<td>Hydrotest Records</td>
</tr>
<tr>
<td>E</td>
<td>Metallurgical Report</td>
</tr>
</tbody>
</table>
NATIONAL RESPONSE CENTER 1-800-424-8802
*** For Public Use ***
Information released to a third party shall comply with any applicable federal and/or state Freedom of Information and Privacy Laws

Incident Report # 1008104

INCIDENT DESCRIPTION

*Report taken at 23:46 on 08-APR-12
Incident Type: PIPELINE
Incident Cause: UNKNOWN
Affected Area:
The incident was discovered on 08-APR-12 at 21:30 local time.
Affected Medium: SOIL / SECONDARY CONTAINMENT

SUSPECTED RESPONSIBLE PARTY
Organization: ENTERPRISE PRODUCTS PIPELINE
HOUSTON, TX 77064
Type of Organization: PRIVATE ENTERPRISE

INCIDENT LOCATION
908 E. ESECO ROAD County: PAYNE
City: CUSHING State: OK

RELEASED MATERIAL(S)
CHRIS Code: OIL Official Material Name: OIL: CRUDE
Also Known As:
Qty Released: 600 BARREL(S)

DESCRIPTION OF INCIDENT
CALLER IS REPORTING A DISCHARGE OF CRUDE OIL FROM A 24" UNDERGROUND LINE DUE TO UNKNOWN CAUSES.

INCIDENT DETAILS
Pipeline Type: TRANSFER
DOT Regulated: YES
Pipeline Above/Below Ground: BELOW
Exposed or Under Water: NO
Pipeline Covered: UNKNOWN

DAMAGES
Fire Involved: NO Fire Extinguished: UNKNOWN
INJURIES: NO Hospitalized: Empl/Crew: Passenger:
FATALITIES: NO Empl/Crew: Passenger: Occupant:
EVACUATIONS: NO Who Evacuated: Radius/Area:
Damages: NO

Closure Type
Air: N Description of Closure Closure
Road: N Length of Closure
Waterway: N Direction of Closure
Track: N
Passengers Transferred: NO

12/19/2013
Environmental Impact: NO
Media Interest: NONE Community Impact due to Material:

REMEDIAL ACTIONS
STATION PIPING IS ISOLATED, VAC TRUCK IS EN ROUTE TO PICK UP THE FREE OIL, AREA WILL BE EXCAVATED.
Release Secured: YES
Release Rate:
Estimated Release Duration:

WEATHER
Weather: PARTLY CLOUDY, °F

ADDITIONAL AGENCIES NOTIFIED

Federal: NONE
State/Local: NONE
State/Local On Scene: NONE
State Agency Number: NONE

NOTIFICATIONS BY NRC
USCG ICC (ICC ONI)
08-APR-12 23:53
CGIS RAO ST. LOUIS (COMMAND CENTER)
08-APR-12 23:53
COLORADO INFO ANALYSIS CENTER (FUSION CENTER)
08-APR-12 23:53
DHS PROTECTIVE SECURITY ADVISOR (PSA DESK)
08-APR-12 23:53
DOT CRISIS MANAGEMENT CENTER (MAIN OFFICE)
08-APR-12 23:53
U.S. EPA VI (MAIN OFFICE)
08-APR-12 23:55
GULF STRIKE TEAM (MAIN OFFICE)
08-APR-12 23:53
NATIONAL INFRASTRUCTURE COORD CTR (MAIN OFFICE)
08-APR-12 23:53
NOAA RPTS FOR OK (MAIN OFFICE)
08-APR-12 23:53
NTSB PIPELINE (MAIN OFFICE)
08-APR-12 23:53
OFC OF ENV SVC CHEROKEE NATIONS OK (MAIN OFFICE)
08-APR-12 23:53
PIPELINE & HAZMAT SAFETY ADMIN (OFFICE OF PIPELINE SAFETY (AUTO))
08-APR-12 23:53
SAC AND FOR NATION (EMERGENCY MANAGEMENT)
08-APR-12 23:53
DEQ OKLAHOMA (MAIN OFFICE)
08-APR-12 23:53
USCG DISTRICT 8 (MAIN OFFICE)
08-APR-12 23:53

ADDITIONAL INFORMATION
NO ADDITIONAL INFORMATION.

*** END INCIDENT REPORT # 1008104 ***
ACCIDENT REPORT - HAZARDOUS LIQUID PIPELINE SYSTEMS

A federal agency may not conduct or sponsor, and a person is not required to respond to, nor shall a person be subject to a penalty for failure to comply with a collection of information subject to the requirements of the Paperwork Reduction Act unless that collection of information displays a current valid OMB Control Number. The OMB Control Number for this information collection is 2137-0047. Public reporting for this collection of information is estimated to take approximately 10 hours per response (5 hours for a small release), including the time for reviewing instructions, gathering the data needed, and completing and reviewing the collection of information. All responses to this collection of information are voluntary. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to: Information Collection Clearance Officer, PHMSA, Office of Pipeline Safety (PHP-30) 1200 New Jersey Avenue, SE, Washington, D.C. 20590.

INSTRUCTIONS

Important: Please read the separate instructions for completing this form before you begin. They clarify the information requested and provide specific examples. If you do not have a copy of the instructions, you can obtain one from the PHMSA Pipeline Safety Community Web Page at http://www.phmsa.dot.gov/pipeline.

PART A - KEY REPORT INFORMATION

<table>
<thead>
<tr>
<th>Report Type: (select all that apply)</th>
<th>Original:</th>
<th>Supplemental:</th>
<th>Final:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Revision Date:</td>
<td>10/31/2013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Operator's OPR-issued Operator Identification Number (OPID): 30828
2. Name of Operator: ENTERPRISE CRUDE PIPELINE LLC
3. Address of Operator:
 - 3a. Street Address: 1100 Louisiana Street
 - 3b. City: Houston
 - 3c. State: Texas
 - 3d. Zip Code: 77002
4. Local time (24-hr clock) and date of the Accident: 04/08/2012 22:04
5. Location of Accident:
 - Latitude: 35.963247
 - Longitude: -96.758858
6. National Response Center Report Number (if applicable): 1008104
7. Local time (24-hr clock) and date of initial telephonic report to the National Response Center (if applicable): 04/08/2012 22:46
8. Commodity released: (select only one, based on predominant volume released)
 - Crude Oil
 - Specify Commodity Subtype:
 - If "Other" Subtype, Describe:
 - If Biofuel/Alternative Fuel and Commodity Subtype is Ethanol Blend, then % Ethanol Blend: %
 - If Biofuel/Alternative Fuel and Commodity Subtype is Biodiesel, then Biodiesel Blend (e.g. B2, B20, B100): B
9. Estimated volume of commodity released unintentionally (Barrels): 600.00
10. Estimated volume of intentional and/or controlled release/blowdown (Barrels): 600.00
11. Estimated volume of commodity recovered (Barrels): 600.00
12. Were there fatalities?
 - If Yes, specify the number in each category:
 12a. Operator employees
 12b. Contractor employees working for the Operator
 12c. Non-Operator emergency responders
 12d. Workers working on the right-of-way, but NOT associated with this Operator
 12e. General public
 12f. Total fatalities (sum of above)
 - If Yes, specify the number in each category:
 13a. Operator employees
 13b. Contractor employees working for the Operator
 13c. Non-Operator emergency responders

Form PHMSA F 7000.1 (Rev. 12-2012)
13d. Workers working on the right-of-way, but NOT associated with this Operator

13e. General public

13f. Total injuries (sum of above)

14. Was the pipeline/facility shut down due to the Accident? Yes
 - If No, Explain:

 - If Yes, complete Questions 14a and 14b: (use local time, 24-hr clock)
 14a. Local time and date of shutdown: 04/08/2012 22:04
 14b. Local time pipeline/facility restarted: 05/20/2012 15:00
 - Still shut down? (* Supplemental Report Required)

15. Did the commodity ignite? No
16. Did the commodity explode? No
17. Number of general public evacuated: 0
18. Time sequence (use local time, 24-hour clock):
 18a. Local time Operator identified Accident: 04/08/2012 22:04
 18b. Local time Operator resources arrived on site: 04/09/2012 22:04

PART B - ADDITIONAL LOCATION INFORMATION

1. Was the origin of Accident onshore? Yes
 If Yes, Complete Questions (2-12)
 If No, Complete Questions (13-15)

 - If Onshore:
 2. State: Oklahoma
 3. Zip Code: 74023
 4. City: Cushing
 5. County or Parish: Payne
 6. Operator-designated location: Specify:

 7. Pipeline/Facility name: C75
 8. Segment name/ID: Cushing West Terminal

9. Was Accident on Federal land, other than the Outer Continental Shelf (OCS)? No
10. Location of Accident: Totally contained on Operator-controlled property
11. Area of Accident (as found): Under soil
 - If Other, Describe:
 - Depth-of-Cover (in): 36

12. Did Accident occur in a crossing? No
 - If Yes, specify below:
 - If Bridge crossing -
 Cased/ Uncased:
 - If Railroad crossing -
 Cased/ Uncased/ Bored/drilled
 - If Road crossing -
 Cased/ Uncased/ Bored/drilled
 - If Water crossing -
 Cased/ Uncased
 - Name of body of water, if commonly known:
 - Approx. water depth (ft) at the point of the Accident:
 - Select:

 - If Offshore:

13. Approximate water depth (ft) at the point of the Accident:

14. Origin of Accident:
 - In State waters - Specify:
 - State:
 - Area:
 - Block/Tract #:
 - Nearest County/Parish:
 - On the Outer Continental Shelf (OCS) - Specify:
 - Area:
 - Block #:

15. Area of Accident:

PART C - ADDITIONAL FACILITY INFORMATION

1. Is the pipeline or facility: Interstate
2. Part of system involved in Accident:
 - If Onshore Breakout Tank or Storage Vessel, including Attached Appurtenances, specify:
 - Onshore Terminal/Tank Farm Equipment and Piping
 - If Item Involved in Accident:
 Pipe

Form PHMSA F 7000.1 (Rev. 12-2012)
- If Pipe, specify: Pipe Body
 3a. Nominal diameter of pipe (in): 24
 3b. Wall thickness (in): .281
 3c. SMYS (Specified Minimum Yield Strength) of pipe (psi): 65,000
 3d. Pipe specification: API 5L
 3e. Pipe Seam, specify: Longitudinal ERW - High Frequency
 - If Other, Describe:
 3f. Pipe manufacturer: Unknown
 3g. Year of manufacture: 1991
 3h. Pipeline coating type at point of Accident, specify: Fusion Bonded Epoxy
 - If Other, Describe:
 - If Weld, including heat-affected zone, specify:
 - If Other, Describe:
 - If Valve, specify:
 - If Mainline, specify:
 - If Other, Describe:
 3i. Manufactured by:
 3j. Year of manufacture:
 - If Tank/Vessel, specify:
 - If Other, Describe:
 - If Other, describe:
 4. Year item involved in Accident was installed:
 5. Material involved in Accident: Carbon Steel
 - If Material other than Carbon Steel, specify: Leak
 - If Mechanical Puncture – Specify Approx. size:
 in, (axial) by
 in, (circumferential)
 6. Type of Accident Involved:
 - If Leak - Select Type: Pinhole
 - If Other, Describe: Size of a dime
 - If Rupture - Select Orientation:
 - If Other, Describe: Approx. size, in, (widest opening) by
 in, (length circumferentially or axially)
 - If Other – Describe:

PART D - ADDITIONAL CONSEQUENCE INFORMATION

1. Wildlife impact: No
 1a. If Yes, specify all that apply:
 - Fish/aquatic
 - Birds
 - Terrestrial

2. Soil contamination: Yes

3. Long term impact assessment performed or planned: No

4. Anticipated remediation: Yes
 4a. If Yes, specify all that apply:
 - Surface water
 - Groundwater
 - Soil
 - Vegetation
 - Wildfires

5. Water contamination: No
 5a. If Yes, specify all that apply:
 - Ocean/Seawater
 - Surface
 - Groundwater
 - Drinking water. (Select one or both)
 - Private Well
 - Public Water Intake

5b. Estimated amount released in or reaching water (Barrels):

5c. Name of body of water, if commonly known:

6. At the location of this Accident, had the pipeline segment or facility been identified as one that "could affect" a High Consequence Area (HCA) as determined in the Operator's Integrity Management Program? No

7. Did the released commodity reach or occur in one or more High Consequence Area (HCA)? No
 7a. If Yes, specify HCA type(s). (Select all that apply)
 - Commercially Navigable Waterway:
 - Was this HCA identified in the "could affect"
<table>
<thead>
<tr>
<th>Determination for this Accident site in the Operator's Integrity Management Program?</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Population Area:</td>
</tr>
<tr>
<td>Was this HCA identified in the "could affect" determination for this Accident site in the Operator's Integrity Management Program?</td>
</tr>
<tr>
<td>Other Populated Area</td>
</tr>
<tr>
<td>Was this HCA identified in the "could affect" determination for this Accident site in the Operator's Integrity Management Program?</td>
</tr>
<tr>
<td>Unusually Sensitive Area (USA) - Drinking Water</td>
</tr>
<tr>
<td>Was this HCA identified in the "could affect" determination for this Accident site in the Operator's Integrity Management Program?</td>
</tr>
<tr>
<td>Unusually Sensitive Area (USA) - Ecological</td>
</tr>
<tr>
<td>Was this HCA identified in the "could affect" determination for this Accident site in the Operator's Integrity Management Program?</td>
</tr>
</tbody>
</table>

8. Estimated Property Damage:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a. Estimated cost of public and non-Operator private property damage</td>
<td>$ 0</td>
</tr>
<tr>
<td>8b. Estimated cost of commodity lost</td>
<td>$ 60,000</td>
</tr>
<tr>
<td>8c. Estimated cost of Operator's property damage & repairs</td>
<td>$ 1,560,277</td>
</tr>
<tr>
<td>8d. Estimated cost of Operator's emergency response</td>
<td>$ 63,100</td>
</tr>
<tr>
<td>8e. Estimated cost of Operator's environmental remediation</td>
<td>$ 14,560</td>
</tr>
<tr>
<td>8f. Estimated other costs</td>
<td>$ 0</td>
</tr>
<tr>
<td>Total estimated property damage (sum of above)</td>
<td>$ 1,698,327</td>
</tr>
</tbody>
</table>

Part E - Additional Operating Information

1. Estimated pressure at the point and time of the Accident (psig): 20.00
2. Maximum Operating Pressure (MOP) at the point and time of the Accident (psig): 275.00
3. Describe the pressure on the system or facility relating to the Accident (psig): Pressure did not exceed MOP
4. Not including pressure reductions required by PHMSA regulations, was the system or facility operating under an established pressure restriction with pressure limits below those normally allowed by the MOP? No
 - If Yes, Complete 4a and 4b below:
 4a. Did the pressure exceed this established pressure restriction? No
 4b. Was this pressure restriction mandated by PHMSA or the State? No

5. Was "Onshore Pipeline, Including Valve Sites" OR "Offshore Pipeline, Including Riser and Riser Bend" selected in PART C, Question 27? No
 - If Yes - (Complete 5a. - 5e. below)
 5a. Type of upstream valve used to initially isolate release source:
 5b. Type of downstream valve used to initially isolate release source:
 5c. Length of segment isolated between valves (ft):
 5d. Is the pipeline configured to accommodate internal inspection tools? No
 - If No, Which physical features limit tool accommodation? (select all that apply)
 - Changes in line pipe diameter
 - Presence of unsuitable mainline valves
 - Tight or mitered pipe bends
 - Other passage restrictions (i.e. unbarred tee's, projecting instrumentation, etc.)
 - Extra thick pipe wall (applicable only for magnetic flux leakage internal inspection tools)
 - Other

 - If Other, Describe:

5e. For this pipeline, are there operational factors which significantly complicate the execution of an internal inspection tool run? No
 - If Yes, Which operational factors complicate execution? (select all that apply)
 - Excessive debris or scale, wax, or other wall buildup

Form PHMSA F 7000.1 (Rev. 12-2012)
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Was a Supervisory Control and Data Acquisition (SCADA)-based system in place on the pipeline or facility involved in the Accident?</td>
<td>No</td>
</tr>
<tr>
<td>7a. Was it operating at the time of the Accident?</td>
<td></td>
</tr>
<tr>
<td>7b. Was it fully functional at the time of the Accident?</td>
<td></td>
</tr>
<tr>
<td>7c. Did SCADA-based information (such as alarm(s), alert(s), event(s), and/or volume calculations) assist with the detection of the Accident?</td>
<td></td>
</tr>
<tr>
<td>7d. Did SCADA-based information (such as alarm(s), alert(s), event(s), and/or volume calculations) assist with the confirmation of the Accident?</td>
<td>No</td>
</tr>
<tr>
<td>8. How was the Accident initially identified for the Operator?</td>
<td>Local Operating Personnel, including contractors</td>
</tr>
<tr>
<td>9. Was an investigation initiated into whether or not the controller(s) or control room issues were the cause of or a contributing factor to the Accident?</td>
<td>No, the Operator did not find that an investigation of the controller(s) actions or control room issues was necessary due to: (provide an explanation for why the Operator did not investigate)</td>
</tr>
<tr>
<td>- If No, the Operator did not find that an investigation of the controller(s) actions or control room issues was necessary due to: (provide an explanation for why the operator did not investigate)</td>
<td>It was obvious that operator was not at fault. Pipe was under atmospheric pressure at the time of the incident.</td>
</tr>
<tr>
<td>PART F - DRUG & ALCOHOL TESTING INFORMATION</td>
<td></td>
</tr>
<tr>
<td>1. As a result of this Accident, were any Operator employees tested under the post-accident drug and alcohol testing requirements of DOT’s Drug & Alcohol Testing regulations?</td>
<td>No</td>
</tr>
<tr>
<td>1a. Specify how many were tested:</td>
<td></td>
</tr>
<tr>
<td>1b. Specify how many failed:</td>
<td></td>
</tr>
</tbody>
</table>

Form PHMSA F 7000.1 (Rev. 12-2012)
2. As a result of this Accident, were any Operator contractor employees tested under the post-accident drug and alcohol testing requirements of DOT's Drug & Alcohol Testing regulations?
 - If Yes:
 - If No:

2a. Specify how many were tested:

2b. Specify how many failed:

PART G – APPARENT CAUSE

Select only one box from PART G in shaded column on left representing the APPARENT Cause of the Accident, and answer the questions on the right. Describe secondary, contributing or root causes of the Accident in the narrative (PART H).

<table>
<thead>
<tr>
<th>Apparent Cause:</th>
<th>G1 - Corrosion Failure</th>
</tr>
</thead>
</table>

G1 - Corrosion Failure - only one sub-cause can be picked from shaded left-hand column

<table>
<thead>
<tr>
<th>External Corrosion:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Corrosion:</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **If External Corrosion:**

 1. Results of visual examination:
 - If Other, Describe:

 2. Type of corrosion: (select all that apply)
 - Galvanic
 - Atmospheric
 - Stray Current
 - Microbiological
 - Selective Seam
 - Other:
 - If Other, Describe:

 3. The type(s) of corrosion selected in Question 2 is based on the following: (select all that apply)
 - Field examination
 - Determined by metallurgical analysis
 - Other:
 - If Other, Describe:

 4. Was the failed item buried under the ground?
 - If Yes:
 - (4a. Was failed item considered to be under cathodic protection at the time of the Accident?
 - If Yes - Year protection started:
 - If No - Year protection started:
 - 4b. Was shielding, tenting, or disbonding of coating evident at the point of the Accident?
 - 4c. Has one or more Cathodic Protection Survey been conducted at the point of the Accident?
 - If Yes, CP Annual Survey – Most recent year conducted:
 - If Yes, Close Interval Survey – Most recent year conducted:
 - If Yes, Other CP Survey – Most recent year conducted:
 - If No:

 5. Was there observable damage to the coating or paint in the vicinity of the corrosion?
 - If Internal Corrosion:

 6. Results of visual examination:
 - Localized Pitting
 - Other:

 7. Type of corrosion (select all that apply):
 - Corrosive Commodity
 - Water drop-out/Acid
 - Microbiological
 - Erosion
 - Other:
 - If Other, Describe:

 8. The cause(s) of corrosion selected in Question 7 is based on the following: (select all that apply):
 - Field examination
 - Determined by metallurgical analysis
 - Other:
 - If Other, Describe:

 9. Location of corrosion (select all that apply):
 - Low point in pipe
 - Elbow
 - Other:

Form PHMSA F 7000.1 (Rev. 12-2012)
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Was the commodity treated with corrosion inhibitors or biocides?</td>
<td>No</td>
</tr>
<tr>
<td>11. Was the interior coated or lined with protective coating?</td>
<td>No</td>
</tr>
<tr>
<td>12. Were cleaning/decontamination pigs (or other operations) routinely utilized?</td>
<td>No</td>
</tr>
<tr>
<td>13. Were corrosion coupons routinely utilized?</td>
<td>No</td>
</tr>
<tr>
<td>14. List the year of the most recent inspections:</td>
<td></td>
</tr>
<tr>
<td>14a. API Std 653 Out-of-Service Inspection</td>
<td>No Out-of-Service Inspection completed</td>
</tr>
<tr>
<td>14b. API Std 653 In-Service Inspection</td>
<td>No In-Service Inspection completed</td>
</tr>
<tr>
<td>15. Has one or more internal inspection tool collected data at the point of the Accident?</td>
<td>No</td>
</tr>
<tr>
<td>15a. If Yes, for each tool used, select type of internal inspection tool and indicate most year run: -</td>
<td></td>
</tr>
<tr>
<td>- Magnetic Flux Leakage Tool</td>
<td>Most recent year:</td>
</tr>
<tr>
<td>- Ultrasonic</td>
<td>Most recent year:</td>
</tr>
<tr>
<td>- Geometry</td>
<td>Most recent year:</td>
</tr>
<tr>
<td>- Caliper</td>
<td>Most recent year:</td>
</tr>
<tr>
<td>- Crack</td>
<td>Most recent year:</td>
</tr>
<tr>
<td>- Hard Spot</td>
<td>Most recent year:</td>
</tr>
<tr>
<td>- Combination Tool</td>
<td>Most recent year:</td>
</tr>
<tr>
<td>- Transverse Field/Triaxial</td>
<td>Most recent year:</td>
</tr>
<tr>
<td>- Other</td>
<td>Most recent year:</td>
</tr>
<tr>
<td>16. Has one or more hydrotest or other pressure test been conducted since original construction at the point of the Accident?</td>
<td>Yes</td>
</tr>
<tr>
<td>If Yes -</td>
<td></td>
</tr>
<tr>
<td>Most recent year tested:</td>
<td>2006</td>
</tr>
<tr>
<td>Test pressure:</td>
<td>364.00</td>
</tr>
<tr>
<td>17. Has one or more Direct Assessment been conducted on this segment?</td>
<td>No</td>
</tr>
<tr>
<td>If Yes, and an Investigative dig was conducted at the point of the Accident:</td>
<td></td>
</tr>
<tr>
<td>Most recent year conducted:</td>
<td></td>
</tr>
<tr>
<td>- If Yes, but the point of the Accident was not identified as a dig site:</td>
<td></td>
</tr>
<tr>
<td>Most recent year conducted:</td>
<td></td>
</tr>
<tr>
<td>18a. If Yes, for each examination conducted since January 1, 2002, select type of non-destructive examination and indicate most recent year the examination was conducted:</td>
<td></td>
</tr>
<tr>
<td>- Radiography</td>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>- Guided Wave Ultrasonic</td>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>- Handheld Ultrasonic Tool</td>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>- Wet Magnetic Particle Test</td>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>- Dry Magnetic Particle Test</td>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>- Other</td>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>Describe:</td>
<td></td>
</tr>
</tbody>
</table>

G2 - Natural Force Damage - only one sub-cause can be picked from shaded left-handed column

Natural Force Damage - Sub-Cause:
- If Earth Movement, NOT due to Heavy Rains/Floods:

1. Specify:

Form PHMSA F 7000.1 (Rev. 12-2012)
- If Other, Describe:

2. Specify:

- If Other, Describe:

- If Lightning:

3. Specify:

- If Temperature:

4. Specify:

- If Other, Describe:

- If High Winds:

- If Other Natural Force Damage:

5. Describe:

Complete the following if any Natural Force Damage sub-cause is selected.

6. Were the natural forces causing the Accident generated in conjunction with an extreme weather event?

 6a. If Yes, specify: (select all that apply)

 - Hurricane
 - Tropical Storm
 - Tornado
 - Other

 - If Other, Describe:

G3 - Excavation Damage - only one sub-cause can be picked from shaded left-hand column

Excavation Damage – Sub-Cause:

- If Excavation Damage by Operator (First Party):

- If Excavation Damage by Operator’s Contractor (Second Party):

- If Excavation Damage by Third Party:

- If Previous Damage due to Excavation Activity:

Complete Questions 1-5 ONLY IF the "Item Involved in Accident" (from PART C, Question 3) is Pipe or Weld.

1. Has one or more internal inspection tool collected data at the point of the Accident?

 1a. If Yes, for each tool used, select type of internal inspection tool and indicate most recent year run:

 - Magnetic Flux Leakage
 Most recent year conducted:

 - Ultrasonic
 Most recent year conducted:

 - Geometry
 Most recent year conducted:

 - Caliper
 Most recent year conducted:

 - Crack
 Most recent year conducted:

 - Hard Spot
 Most recent year conducted:

 - Combination Tool
 Most recent year conducted:

 - Transverse Field/Triaxial
 Most recent year conducted:

 - Other
 Most recent year conducted:

 Describe:

2. Do you have reason to believe that the internal inspection was completed BEFORE the damage was sustained?

3. Has one or more hydrotest or other pressure test been conducted since original construction at the point of the Accident?

 - If Yes:
 Most recent year tested:
 Test pressure (psig):

4. Has one or more Direct Assessment been conducted on the pipeline segment?

 - If Yes, and an investigative dig was conducted at the point of the Accident:
 Most recent year conducted:

 - If Yes, but the point of the Accident was not identified as a dig site:
 Most recent year conducted:

Form PHMSA F 7000.1 (Rev. 12-2012)
5. Has one or more non-destructive examination been conducted at the point of the accident since January 1, 2002?

5a. If Yes, for each examination, conducted since January 1, 2002, select type of non-destructive examination and indicate most recent year the examination was conducted:

- Radiography
 - Most recent year conducted:

- Guided Wave Ultrasonic
 - Most recent year conducted:

- Handheld Ultrasonic Tool
 - Most recent year conducted:

- Wet Magnetic Particle Test
 - Most recent year conducted:

- Dry Magnetic Particle Test
 - Most recent year conducted:

- Other
 - Most recent year conducted:

Describe:

Complete the following if Excavation Damage by Third Party is selected as the sub-cause.

6. Did the operator get prior notification of the excavation activity?

6a. If Yes, notification received from: (select all that apply) -

- One-Call System
- Excavator
- Contractor
- Landowner

Complete the following mandatory CGA-DIRT Program questions if any Excavation Damage sub-cause is selected.

7. Do you want PHMSA to upload the following information to CGA-DIRT (www.cga-dirt.com)?

8. Right-of-Way where event occurred: (select all that apply) -

- Public
 - If "Public", Specify:

- Private
 - If "Private", Specify:

- Pipeline Property/Easement
- Power/Transmission Line
- Railroad
- Dedicated Public Utility Easement
- Federal Land
- Data not collected
- Unknown/Other

9. Type of excavator:

10. Type of excavation equipment:

11. Type of work performed:

12. Was the One-Call Center notified?

12a. If Yes, specify ticket number:

12b. If this is a State where more than a single One-Call Center exists, list the name of the One-Call Center notified:

13. Type of Locator:

14. Were facility locate marks visible in the area of excavation?

15. Were facilities marked correctly?

16. Did the damage cause an interruption in service?

16a. If Yes, specify duration of the interruption (hours)

17. Description of the CGA-DIRT Root Cause (select only the one predominant first level CGA-DIRT Root Cause and then, where available as a choice, the one predominant second level CGA-DIRT Root Cause as well):

Root Cause:
- If One-Call Notification Practices Not Sufficient, specify:
- If Locating Practices Not Sufficient, specify:
- If Excavation Practices Not Sufficient, specify:
- If Other/None of the Above, explain:

G4 - Other Outside Force Damage - only one sub-cause can be selected from the shaded left-hand column

Other Outside Force Damage – Sub-Cause:

- If Nearby Industrial, Man-made, or Other Fire/Explosion as Primary Cause of Incident:

- If Damage by Car, Truck, or Other Motorized Vehicle/Equipment NOT Engaged in Excavation:
 1. Vehicle/Equipment operated by:

- If Damage by Boats, Barges, Drilling Rigs, or Other Maritime Equipment or Vessels Set Adrift or Which Have Otherwise Lost Their Mooring:

Form PHMSA F 7000.1 (Rev. 12-2012)
2. Select one or more of the following if an extreme weather event was a factor:
 - Hurricane
 - Tropical Storm
 - Tornado
 - Heavy Rains/Flood
 - Other
 - If Other, Describe:

3. If Routine or Normal Fishing or Other Maritime Activity NOT Engaged in Excavation:

4. If Electrical Arcing from Other Equipment or Facility:

5. If Previous Mechanical Damage NOT Related to Excavation:
 Complete Questions 3-7 ONLY IF the "Item Involved in Accident" (from PART C, Question 3) is Pipe or Weld.

3a. Has one or more internal inspection tool collected data at the point of the Accident?
 - Yes
 - If Yes, for each tool used, select type of internal inspection tool and indicate most recent year run:
 - Magnetic Flux Leakage
 - Ultrasonic
 - Geometry
 - Caliper
 - Crack
 - Hard Spot
 - Combination Tool
 - Transverse Field/Triaxial
 - Other
 - If Other, Describe:

4. Do you have reason to believe that the internal inspection was completed BEFORE the damage was sustained?
 - Yes
 - No

5. Has one or more hydrotest or other pressure test been conducted since original construction at the point of the Accident?
 - Yes
 - Most recent year tested:
 - Test pressure (psig):
 - No

6. Has one or more Direct Assessment been conducted on the pipeline segment?
 - Yes
 - If Yes, and an Investigative dig was conducted at the point of the Accident:
 - Most recent year conducted:
 - No

7. Has one or more non-destructive examination been conducted at the point of the Accident since January 1, 2002?
 - Yes
 - If Yes, for each examination conducted since January 1, 2002, select type of non-destructive examination and indicate most recent year the examination was conducted:
 - Radiography
 - Guided Wave Ultrasonic
 - Handheld Ultrasonic Tool
 - Wet Magnetic Particle Test
 - Dry Magnetic Particle Test
 - Other
 - If Other, Describe:
 - No

8. Specify:

9. If Other Damage:
 - If Other, Describe:

Form PHMSA F 7000.1 (Rev. 12-2012)
G5 - Material Failure of Pipe or Weld - only one sub-cause can be selected from the shaded left-hand column

Use this section to report material failures ONLY IF the "Item Involved in Accident" (from PART C, Question 3) is "Pipe" or "Weld."

Material Failure of Pipe or Weld - Sub-Cause:

1. The sub-cause selected below is based on the following: *(select all that apply)*
 - Field Examination
 - Determined by Metallurgical Analysis
 - Other Analysis
 - If "Other Analysis", Describe:
 - Sub-cause is Tentative or Suspected; Still Under Investigation
 (Supplemental Report required)

2. If Construction, Installation, or Fabrication-related:
 2. List contributing factors: *(select all that apply)*
 - Fatigue or Vibration-related
 - Specify:
 - If Other, Describe:
 - Mechanical Stress:
 - Other
 - If Other, Describe:

3. If Original Manufacturing-related (NOT girth weld or other welds formed in the field):
 2. List contributing factors: *(select all that apply)*
 - Fatigue or Vibration-related:
 - Specify:
 - If Other, Describe:
 - Mechanical Stress:
 - Other
 - If Other, Describe:

4. If Environmental Cracking-related:
 3. Specify:
 - Other - Describe:

Complete the following if any Material Failure of Pipe or Weld sub-cause is selected.

4. Additional factors: *(select all that apply)*:
 - Dent
 - Gouge
 - Pipe Bend
 - Arc Burn
 - Crack
 - Lack of Fusion
 - Lamination
 - Buckle
 - Wrinkle
 - Misalignment
 - Burnt Steel
 - Other:
 - If Other, Describe:

5. Has one or more internal inspection tool collected data at the point of the Accident?
 5a. If Yes, for each tool used, select type of internal inspection tool and indicate most recent year run:
 - Magnetic Flux Leakage
 - Most recent year run:
 - Ultrasonic
 - Most recent year run:
 - Geometry
 - Most recent year run:
 - Caliper
 - Most recent year run:
 - Crack
 - Most recent year run:
 - Hard Spot
 - Most recent year run:
 - Combination Tool
 - Most recent year run:
 - Transverse Field/Triaxial
 - Most recent year run:
 - Other
 - Most recent year run:

Form PHMSA F 7000.1 (Rev. 12-2012)
<table>
<thead>
<tr>
<th>Describe:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Has one or more hydrotest or other pressure test been conducted since original construction at the point of the Accident?</td>
</tr>
<tr>
<td>- If Yes:</td>
</tr>
<tr>
<td>Most recent year tested:</td>
</tr>
<tr>
<td>Test pressure (psig):</td>
</tr>
<tr>
<td>7. Has one or more Direct Assessment been conducted on the pipeline segment?</td>
</tr>
<tr>
<td>- If Yes, and an investigative dig was conducted at the point of the Accident -</td>
</tr>
<tr>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>- If Yes, but the point of the Accident was not identified as a dig site -</td>
</tr>
<tr>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>8. Has one or more non-destructive examination(s) been conducted at the point of the Accident since January 1, 2002?</td>
</tr>
<tr>
<td>8a. If Yes, for each examination conducted since January 1, 2002, select type of non-destructive examination and indicate most recent year the examination was conducted:</td>
</tr>
<tr>
<td>- Radiography</td>
</tr>
<tr>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>- Guided Wave Ultrasonic</td>
</tr>
<tr>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>- Handheld Ultrasonic Tool</td>
</tr>
<tr>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>- Wet Magnetic Particle Test</td>
</tr>
<tr>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>- Dry Magnetic Particle Test</td>
</tr>
<tr>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>- Other</td>
</tr>
<tr>
<td>Most recent year conducted:</td>
</tr>
<tr>
<td>Describe:</td>
</tr>
</tbody>
</table>

G6 – Equipment Failure - only one sub-cause can be selected from the shaded left-hand column

Equipment Failure – Sub-Cause:

- **If Malfunction of Control/Relief Equipment:**
 1. Specify: (select all that apply) -
 - Control Valve
 - Instrumentation
 - SCADA
 - Communications
 - Block Valve
 - Check Valve
 - Relief Valve
 - Power Failure
 - Stopple/Control Fitting
 - ESD System Failure
 - Other
 - If Other – Describe:

- **If Pump or Pump-related Equipment:**
 2. Specify:
 - If Other – Describe:

- **If Threaded Connection/Coupling Failure:**
 3. Specify:
 - If Other – Describe:

- **If Non-threaded Connection Failure:**
 4. Specify:
 - If Other – Describe:

- **If Defective or Loose Tubing or Fitting:**

- If Failure of Equipment Body (except Pump), Tank Plate, or other Material:

- If Other Equipment Failure:
 5. Describe:

Complete the following if any Equipment Failure sub-cause is selected.

6. Additional factors that contributed to the equipment failure: (select all that apply) -
 - Excessive vibration
 - Overpressurization
 - No support or loss of support
 - Manufacturing defect

Form PHMSA F 7000.1 (Rev. 12-2012)
- Loss of electricity
- Improper installation
- Mismatched items (different manufacturer for tubing and tubing fittings)
- Dissimilar metals
- Breakdown of soft goods due to compatibility issues with transported commodity
- Valve vault or valve can contributed to the release
- Alarm/Status failure
- Misalignment
- Thermal stress
- Other
 - If Other, Describe:

G7 - Incorrect Operation - only one sub-cause can be selected from the shaded left-hand column

Incorrect Operation – Sub-Cause:

- Damage by Operator or Operator's Contractor NOT Related to Excavation and NOT due to Motorized Vehicle/Equipment Damage
 - No
- Tank, Vessel, or Sump/separator Allowed or Caused to Overfill or Overflow
 - No
 1. Specify:
 - If Other, Describe:
- Valve Left or Placed in Wrong Position, but NOT Resulting In a Tank, Vessel, or Sump/separator Overflow or Facility Overpressure
 - No
- Pipeline or Equipment Overpressured
 - No
- Equipment Not Installed Properly
 - No
- Wrong Equipment Specified or Installed
 - No
- Other Incorrect Operation
 - No
 2. Describe:

Complete the following if any Incorrect Operation sub-cause is selected.

3. Was this Accident related to (select all that apply):
 - Inadequate procedure
 - No procedure established
 - Failure to follow procedure
 - Other:
 - If Other, Describe:

4. What category type was the activity that caused the Accident?
5. Was the task(s) that led to the Accident identified as a covered task in your Operator Qualification Program?
 5a. If Yes, were the individuals performing the task(s) qualified for the task(s)?

G8 - Other Accident Cause - only one sub-cause can be selected from the shaded left-hand column

Other Accident Cause – Sub-Cause:

- If Miscellaneous:
 1. Describe:
 - If Unknown:
 2. Specify:

PART H - NARRATIVE DESCRIPTION OF THE ACCIDENT

The station operator observed oil in the dike of tanks 21 and 22. The lines were isolated and free standing oil was removed prior to excavation. Line was hydrotested and clamped the following morning. Existing 1500 feet of 24 inch pipe from Manifold A to Tank #23 was removed, replaced and back into service with new 24 inch pipe on June 22, 2012.
<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparer's Name</td>
<td>Suzie Davis</td>
</tr>
<tr>
<td>Preparer's Title</td>
<td>Senior Pipeline Compliance Engineer</td>
</tr>
<tr>
<td>Preparer's Telephone Number</td>
<td>713.381.6487</td>
</tr>
<tr>
<td>Preparer's E-mail Address</td>
<td>smdavis@aprod.com</td>
</tr>
<tr>
<td>Preparer's Facsimile Number</td>
<td></td>
</tr>
<tr>
<td>Authorized Signature's Name</td>
<td>Suzie Davis</td>
</tr>
<tr>
<td>Authorized Signature Title</td>
<td>Senior Pipeline Compliance Engineer</td>
</tr>
<tr>
<td>Authorized Signature Telephone Number</td>
<td>713.381.6487</td>
</tr>
<tr>
<td>Authorized Signature Email</td>
<td>smdavis@aprod.com</td>
</tr>
<tr>
<td>Date</td>
<td>10/31/2013</td>
</tr>
</tbody>
</table>
Appendix D

Hydrotest Records

This document is on file at PHMSA
Appendix E

Metallurgical Report

This document is on file at PHMSA